We would like to offer a standard way to cite the database, as follows:
https://doi.org/10.1111/ina.13028
https://doi.org/10.1016/j.envint.2023.108127
Buildings are constructed and operated to satisfy human needs and improve quality of life. Good indoor air quality (IAQ) and thermal comfort are prerequisites for human health and well-being. For their provision, buildings often rely on heating, ventilation, and air conditioning (HVAC) systems, which may lead to higher energy consumption. This directly impacts energy efficiency goals and the linked climate change considerations. The balance between energy use, optimum IAQ and thermal comfort calls for scientifically solid and well-established limit values for exposures experienced by building occupants in indoor spaces, including homes, schools, and offices.
The present paper aims to appraise limit values for selected indoor pollutants reported in the scientific literature, and to present how they are handled in international and national guidelines and standards. The pollutants include carbon dioxide (CO2), formaldehyde (CH2O), particulate matter (PM), nitrogen dioxide (NO2), carbon monoxide (CO), and radon (Rn). Furthermore, acknowledging the particularly strong impact on energy use from HVAC, ventilation, indoor temperature (T), and relative humidity (RH) are also included, as they relate to both thermal comfort and the possibilities to avoid moisture related problems, such as mould growth and proliferation of house dust mites.
Examples of national regulations for these parameters are presented, both in relation to human requirements in buildings and considering aspects related to energy saving. The work is based on the Indoor Environmental Quality (IEQ) guidelines database, which spans across countries and institutions, and aids in taking steps in the direction towards a more uniform guidance for values of indoor parameters. The database is coordinated by the Scientific and Technical Committee (STC) 34, as part of ISIAQ, the International Society of Indoor Air Quality and Climate.
This project is supported by a grant from Halton Foundation.